Modelling of wind power forecasting errors based on kernel recursive least-squares method
نویسندگان
چکیده
منابع مشابه
Kernel Recursive Least Squares
We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm. Our Kernel-RLS algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum meansquared-error regressor. Sparsity (and therefore regularization) of the solution is achieved by an explicit greedy sparsification proces...
متن کاملHierarchic Kernel Recursive Least-Squares
We present a new hierarchic kernel based modeling technique for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel based model in a hierarchical structure, such that the weights of a kernel model over each dimension are modeled over the adjacent dimension. We show that the impos...
متن کاملModeling Structure Property Relationships with Kernel Recursive Least Squares
Motivation. Modeling structure property relationships accurately is a challenging task and newly developed kernel based methods may provide the accuracy for building these relationships. Method. Kernelized variant of traditional recursive least squares algorithm is used to model two QSPR datasets. Results. All the datasets showed a good correlation between actual and predicted values of boiling...
متن کاملA novel extended kernel recursive least squares algorithm
In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden ...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Modern Power Systems and Clean Energy
سال: 2017
ISSN: 2196-5625,2196-5420
DOI: 10.1007/s40565-016-0259-7